基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短文本通常是由几个到几十个词组成,长度短、特征稀疏,导致短文本分类的准确率难以提升.为了解决此问题,提出了一种基于局部语义特征与上下文关系融合的中文短文本分类算法,称为Bi-LSTM_CNN_AT,该算法利用CNN提取文本的局部语义特征,利用Bi-LSTM提取文本的上下文语义特征,并结合注意力机制,使得Bi-LSTM_CNN_AT模型能从众多的特征中提取出和当前任务最相关的特征,更好地进行文本分类.实验结果表明,Bi-LSTM_CNN_AT模型在NLP&CC2017的新闻标题分类数据集18个类别中的分类准确率为81.31%,比单通道的CNN模型提高2.02%,比单通道的Bi-LSTM模型提高1.77%.
推荐文章
基于CP-CNN的中文短文本分类研究
短文本
分类
卷积神经网络
中文短文本语法语义相似度算法
语法语义相似度
语句相似性计算
HowNet
语料库
语法分析
语义分析
相似度计算
一种基于上下文的语义相似度算法
语义相似度
本体
上下文
知网
一种基于上下文的语义映射方法
本体
本体映射
语义
上下文
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 局部语义与上下文关系的中文短文本分类算法
来源期刊 计算机工程与应用 学科
关键词 短文本分类 卷积神经网络 双向长短时记忆网络 注意力机制
年,卷(期) 2021,(6) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 94-100
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1912-0185
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (13)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短文本分类
卷积神经网络
双向长短时记忆网络
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
黑龙江省自然科学基金
英文译名:
官方网址:http://jj.dragon.cn/zr/index.asp
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导