基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对在强噪声背景下风电机组滚动轴承复合故障特征较为微弱,且不同故障特征之间相互干扰,使得复合故障特征难以有效分离的问题,提出基于多点峭度-多点优化调整的最小熵解卷积(multipoint kurtosis-multipoint optimal minimum entropy deconvolution adjusted,MK-MOMEDA)和Teager能量算子的复合故障特征提取方法.首先对复合故障信号进行解卷积多点峭度谱分析,获取故障冲击成分的周期,根据相关的周期分别设定包含故障周期在内的特征提取区间,然后对故障信号进行解卷积运算,分离出不同的故障特征,再使用Teager能量算子增强解卷积后的冲击信号,最后对增强后的信号作傅里叶变换,通过分析频谱图中的主导故障特征频率可有效识别出复合故障特征.将该方法应用于实验平台模拟滚动轴承复合故障以及实际风电机组轴承复合故障进行验证,结果表明该方法能实现复合故障特征的准确分离,成功诊断出故障类型.
推荐文章
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法
变分模态分解
对称差分能量算子
峭度
滚动轴承
故障诊断
基于VMD与不同包络阶次构造的风电机组滚动轴承故障诊断
风电机组
非平稳信号
计算阶比跟踪(COT)
包络阶次
变分模态分解(VMD)
逆包络阶次谱(RE-SES)
轴承故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断
来源期刊 太阳能学报 学科
关键词 风电机组 故障诊断 故障监测 滚动轴承 特征提取 多点峭度
年,卷(期) 2021,(7) 所属期刊栏目
研究方向 页码范围 297-307
页数 11页 分类号 TH17
字数 语种 中文
DOI 10.19912/j.0254-0096.tynxb.2019-0276
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电机组
故障诊断
故障监测
滚动轴承
特征提取
多点峭度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
论文1v1指导