基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对交通流预测过程中城市道路路网的空间特征难以充分提取,导致预测结果精度不高的问题,提出图卷积网络(GCN)与门控循环单元(GRU)组合短时交通流预测模型.利用GCN对拓扑结构数据处理的优势,将城市道路路网空间排列结构转换为拓扑关系建模,通过解决拓扑关系问题有效提取出路网间的空间特征.采用Graph-SAGE算法改进GCN模型,通过加和聚合算子和图注意力机制(GAT)聚合空间特征,将包含空间特征的输出作为GRU模型的输入提取时间特征.利用真实道路车流量数据进行模型验证,结果表明该模型相较于不具有GCN的模型预测准确率提升约8%,均方误差缩小约0.01037,说明所提模型具有相对较高的稳定性及预测精度,可以为大型城市路网提供重要的交通诱导依据.
推荐文章
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于相互学习的短时交通流预测研究
交通流预测
时空特性
图神经网络
知识蒸馏
相互学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 考虑时空影响下的图卷积网络短时交通流预测
来源期刊 计算机工程与应用 学科
关键词 图卷积网络 门控循环单元 GraphSAGE算法 图注意力机制 城区路网
年,卷(期) 2021,(13) 所属期刊栏目 工程与应用|Engineering and Applications
研究方向 页码范围 269-275
页数 7页 分类号 TP183
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2006-0175
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (19)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1748(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图卷积网络
门控循环单元
GraphSAGE算法
图注意力机制
城区路网
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导