基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Particle swarm algorithm (PSO) and genetic algorithm (GA) were used to optimize the back propagation (BP) artificial neural network for predicting the dynamic responses of the through silicon via (TSV) based three-dimensional packaging structures. A finite ele-ment model of the TSV packaging structure with a strain-rate dependent constitutive model for solder joints was created to simulate the drop impact due to a free fall of 0.8 m to the rigid ground to investigate the structural dynamic responses during the whole impact process. The spatial coordinates of the solder joints were used as the input parameters of the hybrid neural network model for the drop impact responses, while the maximum Von Mises stress and PEEQ (plastic strain) values are identified the output parameters. The correlation coefficient (R), the mean absolute percentage error (MAPE) and the training time were used as the measures to validate and compare the proposed PSO-BP and GA-BP neural networks. The results show that both the PSO-BP model and the GA-BP model can achieve high accuracy predictions with strong generalization capability. Apparently, both optimized algorithms outperform the original BP model, but the PSO-BP model is slightly more superior than the GA-BP model. It is also demonstrated that the proposed optimized algorithms efficiently predict the drop im-pact responses of TSV packaging structures by greatly saving the computational and experimental cost of drop impact tests.
推荐文章
基于组合特征和PSO-BP算法的数字识别
组合特征
粒了群算法
BP神经网络
数字识别
基于GA-BP的移动通信设备故障诊断
故障诊断
神经网络
遗传算法
粒子群算法
基于GA-BP算法的IGBT结温预测模型
IGBT
BP神经网络
GA-BP算法
结温预测模型
基于PSO-BP算法的目标威胁评估
BP神经网络
粒子群算法
威胁指数法
威胁估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Drop impact analysis of TSV-based 3D packaging structure by PSO-BP and GA-BP neural networks
来源期刊 中国焊接 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目
研究方向 页码范围 37-46
页数 10页 分类号
字数 语种 英文
DOI 10.12073/j.cw.20211111001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国焊接
季刊
1004-5341
23-1332/TG
哈尔滨市南岗区和兴路111号
eng
出版文献量(篇)
1017
总下载数(次)
0
总被引数(次)
2827
论文1v1指导