基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
单目深度估计是从单幅图像中获取场景深度信息的重要技术,在智能汽车和机器人定位等领域应用广泛,具有重要的研究价值.随着深度学习技术的发展,涌现出许多基于深度学习的单目深度估计研究,单目深度估计性能也取得了很大进展.本文按照单目深度估计模型采用的训练数据的类型,从3个方面综述了近年来基于深度学习的单目深度估计方法:基于单图像训练的模型、基于多图像训练的模型和基于辅助信息优化训练的单目深度估计模型.同时,本文在综述了单目深度估计研究常用数据集和性能指标基础上,对经典的单目深度估计模型进行了性能比较分析.以单幅图像作为训练数据的模型具有网络结构简单的特点,但泛化性能较差.采用多图像训练的深度估计网络有更强的泛化性,但网络的参数量大、网络收敛速度慢、训练耗时长.引入辅助信息的深度估计网络的深度估计精度得到了进一步提升,但辅助信息的引入会造成网络结构复杂、收敛速度慢等问题.单目深度估计研究还存在许多的难题和挑战.利用多图像输入中包含的潜在信息和特定领域的约束信息,来提高单目深度估计的性能,逐渐成为了单目深度估计研究的趋势.
推荐文章
基于LLOM的单目图像深度图估计算法*
深度估计
单目图像
语义标注
流形学习
深度学习研究进展
深度学习
神经网络
模型
表示
堆栈
预训练
深度学习水文预报研究进展综述Ⅱ——研究进展及展望
深度学习
水文预报
物理机制
整合建模
深度学习研究进展
深度学习
神经网络
模型
表示
堆栈
预训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习单目深度估计研究进展
来源期刊 中国图象图形学报 学科 工学
关键词 单目视觉 场景感知 深度学习 3维重建 深度估计
年,卷(期) 2022,(2) 所属期刊栏目 综述|Review
研究方向 页码范围 390-403
页数 14页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
单目视觉
场景感知
深度学习
3维重建
深度估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导