基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Differential privacy(DP)is widely employed for the private data release in the single-party scenario.Data utility could be degraded with noise generated by ubiquitous data correlation,and it is often addressed by sensitivity reduction with correlation analysis.However,increasing multiparty data release applications present new challenges for existing methods.In this paper,we propose a novel correlated differential privacy of the multiparty data release(MP-CRDP).It effectively reduces the merged dataset's dimensionality and correlated sensitivity in two steps to optimize the utility.We also propose a multiparty correlation analysis technique.Based on the prior knowledge of multiparty data,a more reasonable and rigorous standard is designed to measure the correlated degree,reducing correlated sensitivity,and thus improve the data utility.Moreover,by adding noise to the weights of machine learning algorithms and query noise to the release data,MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms.Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Correlated Differential Privacy of Multiparty Data Release in Machine Learning
来源期刊 计算机科学技术学报(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 Regular Paper
研究方向 页码范围 231-251
页数 21页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学技术学报(英文版)
双月刊
1000-9000
11-2296/TP
16开
北京中关村科学院南路6号 《计算机科学技术学报(英)》编辑部
1986
eng
出版文献量(篇)
2207
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导