基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当粒子群算法(PSO)解决多目标优化问题时,由于PSO有较快的收敛效果,使得种群在寻优过程中多样性不足,易使算法早熟收敛.为有效设计多目标粒子群算法,提出基于自适应网格混合机制的多目标粒子群算法(ammmMOPSO).该算法采用自适应网格和混合机制的一种双重维护策略,以保证外部存档中的非劣解分布均匀,避免种群快速退化,影响粒子开发能力;利用混合机制中的加权策略在外部存档的非劣解中确定全局最优样本,增加了种群的多样性,提升粒子飞向真实Pareto前沿的概率;同时,为防止算法停滞,陷入局部最优的问题,还引入一个变异操作对粒子的位置进行动态变异,增强了粒子的探索能力.仿真实验结果表明:所提算法与其他3个国际经典的多目标粒子群算法相比,具有较优的收敛性和多样性,且有较好的空间化效果.
推荐文章
基于量子行为特性粒子群和自适应网格的多目标优化算法
多目标优化
量子行为特性粒子群优化
高斯变异
自适应网格
Pareto最优解
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
改进的自适应多目标粒子群算法
多目标优化
粒子群优化
帕累托最优
约束控制
边界处理
全局最优选择
自适应控制
最大传输能力
基于自适应量子粒子群算法的阵列天线多目标综合
AQPSO
零陷
波束形成
有源方向图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应网格混合机制的多目标粒子群算法
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 多目标优化 粒子群算法 自适应网格 混合机制 变异操作
年,卷(期) 2022,(2) 所属期刊栏目
研究方向 页码范围 14-23
页数 10页 分类号 TP18
字数 语种 中文
DOI 10.16055/j.issn.1672-058X.2022.0002.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标优化
粒子群算法
自适应网格
混合机制
变异操作
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导