基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The development of phononic crystals,especially their interaction with topological insulators,allows exploration of the anomalous properties of acoustic/elastic waves for various applications.However,rapidly and inversely exploring the geometry of specific targets remains a major challenge.In this work,we show how machine leaming can address this challenge by studying phononic crystal beams using two different inverse design schemes.We first develop the theory of phononic beams using the transfer matrix method.Then,we use the reinforcement learning algorithm to effectively and inversely design the structural parameters to maximize the bandgap width.Furthermore,we employ the tandem-architecture neural network to solve the training-difficulty problem caused by inconsistent data and complete the task of inverse structure design with the targeted topological properties.The two inverse-design schemes have different adaptabilities,and both are characterized by high effi-ciency and stability.This work provides deep insights into the combination of machine learning,topological property,and phononic crystals and offers a reliable platform for rapidly and inversely designing complex material and structure properties.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于Model-on-Demand的预测控制研究
非线性系统
局部建模
广义预测控制
基于Advance PLD Design的PLD设计与仿真
可编程逻辑器件
Advance PLD Design
设计与仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Machine-learning-driven on-demand design of phononic beams
来源期刊 中国科学:物理学 力学 天文学(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 Article
研究方向 页码范围 33-44
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学:物理学 力学 天文学(英文版)
月刊
1674-7348
11-5849/N
16开
北京东黄城根北街16号
80-212
2004
eng
出版文献量(篇)
3714
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导