基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确预测风电功率可以提高电网运行的安全性和可靠性.为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法.首先,利用卷积神经网络(convolutional neural network,CNN)提取数据局部特征,并结合长短期记忆(long short term memory,LSTM)网络构造出融合局部特征预提取模块的CNN-LSTM网络结构;然后,将其与门控循环单元(gated recurrent unit,GRU)网络并行,并通过自适应权重学习模块为CNN-LSTM模块和GRU模块的输出选择最佳权重,构建出CNN-LSTM&GRU组合的短期预测模型.最后,对中国西北某风电场的出力进行预测研究,结果表明:所提模型与单一模型或其他组合模型相比,指标误差更小,预测精度更高.
推荐文章
基于ES-GRU-LSTM的风电场群功率预测
长短记忆神经网络
门控循环单元
风电场群
功率预测
指数平滑法
自适应变异粒子群优化BP的短期风电功率预测模型
短期风电预测
互信息
自适应惯性权重系数
变异因子
反向传播神经网络
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于神经网络的电功率自适应测量方法
神经网络
电功率测量
LEA判别法
自适应
DSP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法
来源期刊 中国电力 学科
关键词 短期风电功率预测 CNN-LSTM GRU 组合预测 自适应权重学习
年,卷(期) 2022,(5) 所属期刊栏目 新能源|New Energy
研究方向 页码范围 47-56,110
页数 11页 分类号
字数 语种 中文
DOI 10.11930/j.issn.1004-9649.202104023
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期风电功率预测
CNN-LSTM
GRU
组合预测
自适应权重学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国电力
月刊
1004-9649
11-3265/TM
大16开
北京市昌平区北七家镇未来科技城北区国家电网公司办公区B315
2-427
1956
chi
出版文献量(篇)
7025
总下载数(次)
12
总被引数(次)
92972
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导