基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Graph convolutional networks (GCNs) have received significant attention from various research fields due to the excellent performance in learning graph representations. Although GCN performs well compared with other methods, it still faces challenges. Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs. Therefore, motivated by an urgent need in terms of efficiency and scalability in training GCN, sampling methods have been proposed and achieved a significant effect. In this paper, we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN. To highlight the characteristics and differences of sampling methods, we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories. Finally, we discuss some challenges and future research directions of the sampling methods.
推荐文章
Windshield Survey在社区护理实践教学中的应用效果研究
社区护理
Windshield Survey
学业自我效能感
实践教学
基于改进Tri-training算法的中文问句分类
Tri-training算法
随机采样
问句分类
基于辅助学习与富信息策略的Tri-training算法
半监督学习
富信息策略
辅助学习策略
Tri-training
说话声识别
基于直觉模糊集的Tri-Training改进算法
Tri-Training算法
SOM算法
直觉模糊集
半监督
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2022,(2) 所属期刊栏目 REVIEW
研究方向 页码范围 205-234
页数 30页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
论文1v1指导