基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 新型冠状病毒肺炎(corona virus disease 2019,COVID-19)患者肺部计算机断层扫描(computed tomo-graphy,CT)图像具有明显的病变特征,快速而准确地从患者肺部CT图像中分割出病灶部位,对COVID-19患者快速诊断和监护具有重要意义.COVID-19肺炎病灶区域复杂多变,现有方法分割精度不高,且对假阴性的关注不够,导致分割结果往往具有较高的特异度,但灵敏度却很低.方法 本文提出了一个基于深度学习的多尺度编解码网络(MED-Net(multiscale encode decode network)),该网络采用资源利用率高、计算速度快的HarDNet68(harmonic densely connected network)作为主干,它主要由5个harmonic dense block(HDB)组成,首先通过5个空洞空间卷积池化金字塔(atrous spatial pyramid pooling,ASPP)对HarDNet68的第1个卷积层和第1、3、4、5个HDB提取多尺度特征.接着在并行解码器(paralleled partial decoder,PPD)基础上设计了一个多尺度的并行解码器(multiscale parallel partial decoder,MPPD),通过对3个不同感受野的分支进行解码,解决了编码器部分的信息丢失及小病灶分割困难等问题.为了提升CT图像分割精度,降低网络学习难度,网络加入了深度监督机制,配合多尺度解码器,增加了对假阴性的关注,从而提高模型的灵敏度.结果 在COVID-19 CT segmentation数据集上对本文网络进行了测试.实验结果表明,MED-Net可以有效地应对数据集样本少,以及分割目标的纹理、尺寸和位置变异大等问题.在只有50幅训练图像和50幅测试图像的数据集上,分割结果的Dice系数为73.8%,灵敏度为77.7%,特异度为94.3%;与Inf-Net(lung infection segmentation deep network)网络相比,分别提升了8.21%、12.28%、7.76%.其中,Dice系数和灵敏度达到了目前基于该数据集相同划分方式的先进水平.结论 本文网络提高了COVID-19肺炎CT图像分割精确度,有效解决了数据集的数据量少、小病灶分割难度大等问题,具有全自动分割COVID-19肺炎CT图像的能力.
推荐文章
COVID-19疫情下方舱CT的紧急建设
新型冠状病毒肺炎
方舱CT
辐射防护
CT质量控制
COVID-19临床资料分析
新型冠状病毒
感染
新型冠状病毒性肺炎
不同人群患COVID-19的胸部CT征象:Meta分析
新型冠状病毒肺炎
体层摄影术,X线计算机
Meta分析
病人
儿童
妊娠期
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 COVID-19肺部CT图像多尺度编解码分割
来源期刊 中国图象图形学报 学科 工学
关键词 新型冠状病毒肺炎(COVID-19) CT图像分割 多尺度编解码 深度监督机制 小病灶分割
年,卷(期) 2022,(3) 所属期刊栏目 计算机断层扫描图像|Computerd Tomography Image
研究方向 页码范围 827-837
页数 11页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
新型冠状病毒肺炎(COVID-19)
CT图像分割
多尺度编解码
深度监督机制
小病灶分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
论文1v1指导