为提高工控系统异常流量检测能力,设计一种结合孤立森林(isolation forest,iForest)和单类支持向量机(one-class support vector machine,OCSVM)的混合算法.采用孤立森林算法检测训练数据中的离群点,将离群点剔除以降低其对单类支持向量机决策函数的影响;基于正常数据训练单类支持向量机模型,结合特征选取和参数优化进一步提高异常检测模型的检测率.实验结果表明:在燃气管道数据集上,该算法模型的检测率提高至92.51%,特别是对异常行为的召回率和查准率上升,优化了异常检测模型的性能,满足可靠性要求.