基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决单一的小波神经网络预测精度不高的问题,提出一种新的基于小波去噪和WNN-ARIMA组合模型,应用小波阈值去噪法对小波神经网络的输入值进行预处理,同时对模型残差值进行ARIMA模型修正.利用该组合模型对洮河流域下巴沟站年径流量进行预测,预测趋势和预测值与原始实测数据吻合度高,表明此组合模型可靠性强,可以有效预测年径流量,以期为洮河流域和其他流域的年径流量预测提供新方法,为水利工程建设和水资源优化配置提供依据.
推荐文章
基于小波分析的ARIMA与LSSVM组合的高炉煤气预测
高炉煤气
小波分析
最小二乘支持向量机
ARIMA模型
组合预测
一种基于小波变换和ARIMA的短期电价混合预测模型
电价预测
小波变换
ARIMA模型
时间序列分析
电价突变
基于小波阈值和全变分模型的图像去噪
图像去噪
自适应阈值
小波变换
全变分模型
基于调和分析和ARIMA-SVR的组合潮汐预测模型
潮汐预测
组合模型
调和分析法
支持向量回归机(SVR)
自回归综合移动平均(ARIMA)模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波去噪和WNN-ARIMA组合模型的年径流预测
来源期刊 数学的实践与认识 学科
关键词 小波神经网络 小波消噪 ARIMA时序模型 组合预测模型
年,卷(期) 2022,(1) 所属期刊栏目 应用|Applications
研究方向 页码范围 172-178
页数 7页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波神经网络
小波消噪
ARIMA时序模型
组合预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学的实践与认识
半月刊
1000-0984
11-2018/O1
16开
北京大学数学科学学院
2-809
1971
chi
出版文献量(篇)
15632
总下载数(次)
52
论文1v1指导