基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
锂离子电池荷电状态(SOC)的准确估计是电池管理系统的重要核心技术之一,也是延长电池寿命的关键.但是 SOC的准确实时估计困难,且精度不高.选取以三元锂电池为研究对象,针对EKF在线性化过程中产生的非线性误差,提出改进的补偿扩展卡尔曼算法(compensation for extended Kalman,CEKF).该算法用GA优化的BP神经网络预测k时刻EKF的非线性误差等,从而补偿扩展卡尔曼k时刻的非线性误差等,且用自适应FFRLS对模型参数进行参数辨识,以DST和BBDST进行实验验证.实验结果表明,该算法估算SOC的精度范围在2%左右,且最大误差和平均误差都比EKF小得多,能更加有效追踪SOC的理论值,且该算法估计的SOC稳定性也比EKF稳定.
推荐文章
基于RTS-IEKPF算法的锂电池SOC估算
锂电池
SOC估算
RTS-IEKPF
粒子滤波
最优平滑
实验验证
OCV处于平台期的汽车锂电池SOC估算的研究
剩余电量估算
无际卡尔曼滤波
粒子滤波
平台期
新型的锂电池荷电状态估算方法
锂电池
荷电状态
扩展卡尔曼滤波
温度影响
估计误差
基于RBF网络的锂电池SOC估算研究
电池管理系统
电池荷电状态
径向基函数
代价函数
梯度下降
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应FFRLS和改进CEKF锂电池SOC的估算
来源期刊 电源技术 学科 工学
关键词 锂离子电池 CEKF BP神经网络 自适应FFRLS GA优化BP网络
年,卷(期) 2022,(4) 所属期刊栏目 化学电源|Chemical power sources
研究方向 页码范围 395-399
页数 5页 分类号 TM912.9
字数 语种 中文
DOI 10.3969/j.issn.1002-087X.2022.04.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
CEKF
BP神经网络
自适应FFRLS
GA优化BP网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导