基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
覆盖模型可以缓解神经机器翻译中的过度翻译和漏翻译问题.现有方法通常依靠覆盖向量或覆盖分数等单一方式存储覆盖信息,而未考虑不同覆盖信息之间的关联性,因此对信息的利用并不完善.针对该问题,基于翻译历史信息的一致性和模型之间的互补性,提出了多覆盖融合模型.首先定义词级覆盖分数概念;然后利用覆盖向量和覆盖分数存储的信息同时指导注意力机制,降低信息存储损失对注意力权重计算的影响.根据两种覆盖信息融合方式的不同,提出了两种多覆盖融合方法.利用序列到序列模型在中英翻译任务上进行了实验,结果表明,所提方法能够显著提升翻译性能,并改善源语言和目标语言的对齐质量.与只使用覆盖向量的模型相比,过度翻译和漏翻译问题的数量得到进一步减少.
推荐文章
基于现代智能识别技术的英语机器翻译模型
智能识别技术
英语翻译
机器翻译模型
结构歧义
最大熵
翻译准确度
基于预训练模型的机器翻译研究与设计
注意力机制
Transformer模型
位置编码
预训练模型
浅析机器翻译
机器翻译
数据库
优势
准确度
基于语义网络的英语机器翻译模型设计与改进
语义网络
机器翻译
模型设计
语义相似度
语料库
权重训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多覆盖模型的神经机器翻译
来源期刊 软件学报 学科 工学
关键词 神经机器翻译 注意力机制 序列到序列模型 多覆盖模型 过度翻译 漏翻译
年,卷(期) 2022,(3) 所属期刊栏目 模式识别与人工智能|PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
研究方向 页码范围 1141-1152
页数 12页 分类号 TP183
字数 语种 中文
DOI 10.13328/j.cnki.jos.006201
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经机器翻译
注意力机制
序列到序列模型
多覆盖模型
过度翻译
漏翻译
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导