基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像超分辨是使低分辨率图像通过端到端训练产生边缘更清晰的高分辨率图像的一种技术,是数字图像处理的一个重要研究方向.该文提出了一种基于生成对抗网络的图像超分辨算法,并对网络结构进行改进.设计的生成器删除了残差块的BN层,增加了特征识别的相关算法,特征提取部分采用两层卷积网络,可以提取更多的图像特征,在低分辨率图像上提取特征,通过卷积计算得到高分辨率图像,可以提升运算结果的准确性.判别器设计采用先分组再整合的思想,将生成图像划分成一定数量的图像块,计算每一部分的判别结果,然后将所有图像块的判别真假组合起来,作为最终的判别结果.经实验验证,设计的网络模型在图像重建效果上有了一定的提高,并节省了一定的运算时间.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于特征重标定生成对抗网络的图像分类算法
生成对抗网络
图像分类
特征重标定
深度学习
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的图像超分辨算法
来源期刊 计算机技术与发展 学科 工学
关键词 生成对抗网络 超分辨 图像处理 深度学习 卷积
年,卷(期) 2022,(4) 所属期刊栏目 图形与图像
研究方向 页码范围 57-62
页数 6页 分类号 TP183|TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.04.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
超分辨
图像处理
深度学习
卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
论文1v1指导