基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于深度学习的磁共振成像(magnetic resonance imaging,MRI)方法需要大规模、高质量的病患数据样本集进行预训练.然而,由于病患隐私及设备等因素限制,获取大规模、高质量的磁共振数据集在实际临床应用中面临挑战.本文提出一种新的基于深度学习的欠采样磁共振图像重建方法,该方法无需预训练、不依赖训练数据集,而是充分利用待重建的目标MR图像的结构先验和支撑先验,并将其引入深度图像先验(deep image prior,DIP)框架,从而削减对训练数据集的依赖,提升学习效率.基于参考图像与目标图像的相似性,采用高分辨率参考图像作为深度网络输入,将结构先验信息引入网络;将参考图像在小波域中幅值大的系数索引集作为目标图像的已知支撑集,构造正则化约束项,将网络训练转化为网络参数的最优化求解过程.实验结果表明,本文方法可由欠采样k空间数据重建得到更精确的磁共振图像,且在保留组织特征、细节纹理方面具有明显优势.
推荐文章
非局部稀疏表示正则化的磁共振图像重建
图像重建
压缩感知
核磁共振成像
非局部相似性
稀疏表示
基于低秩和稀疏性先验知识的压缩感知图像重构
压缩感知
稀疏表示
总变差
低秩属性
基于SENSE和GRAPPA的并行磁共振图像重建算法
并行磁共振图像重建
SENSE算法
GRAPPA算法
K空间
信噪比
线圈灵敏度
基于正则化迭代的并行磁共振图像重建算法
并行磁共振成像
图像重建
最小二乘法
迭代法
正则化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法
来源期刊 物理学报 学科
关键词 磁共振成像 欠采样图像重建 深度图像先验 支撑先验
年,卷(期) 2022,(5) 所属期刊栏目 物理学交叉学科及有关科学技术领域|INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
研究方向 页码范围 344-356
页数 13页 分类号
字数 语种 中文
DOI 10.7498/aps.71.20211761
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁共振成像
欠采样图像重建
深度图像先验
支撑先验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物理学报
半月刊
1000-3290
11-1958/O4
大16开
北京603信箱
2-425
1933
chi
出版文献量(篇)
23474
总下载数(次)
35
总被引数(次)
174683
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导