基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
小波包较之于小波可以更为灵活地提取分散在不同尺度上的信号特征,结合神经网络也就可获得更好的预测精度.本文按此方式建立了一种混合杂交模型用于股票市场价格波动预测,并为获得最优预测精度,本文利用遗传算法进行小波包最优分解选择和神经网络参数选择.通过对上证综指的实证研究,表明这种混合杂交模型的性能优于同类神经网络模型和基于小波分解的神经网络模型.
推荐文章
混合神经网络和混沌理论的股票价格预测研究
混沌
时间序列
股票价格
神经网络
基于自适应遗传算法优化的BP神经网络股票价格预测
股票价格预测模型
自适应遗传算法
BP神经网络
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
基于情感分析和GAN的股票价格预测方法
股票价格预测
情感分析
卷积神经网络
生成对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小波包与神经网络相结合的股票价格预测模型
来源期刊 东南大学学报(自然科学版) 学科 经济
关键词 小波包 神经网络 遗传算法 股票市场 预测
年,卷(期) 2001,(5) 所属期刊栏目
研究方向 页码范围 90-95
页数 7页 分类号 F830.9
字数 5011字 语种 中文
DOI 10.3321/j.issn:1001-0505.2001.05.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何建敏 东南大学经济管理学院 379 7673 43.0 72.0
2 常松 东南大学经济管理学院 8 356 7.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (18)
同被引文献  (6)
二级引证文献  (34)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2002(1)
  • 引证文献(1)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2007(4)
  • 引证文献(4)
  • 二级引证文献(0)
2008(3)
  • 引证文献(3)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(10)
  • 引证文献(1)
  • 二级引证文献(9)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
小波包
神经网络
遗传算法
股票市场
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
总被引数(次)
71314
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导