基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文针对BP神经网络易限入局部极小的问题,提出了混沌梯度优化的神经网络的学习算法,其原理是:用规则来判断由于梯度搜索过程中产生的局部极小,并利用具有全局寻优的特点的混沌搜索,使学习过程能有效地逃离局部极小.即采用梯度下降进行"粗搜索",混沌搜索进行"细搜索",并建立规则将两者结合起来,就构成了BP神经网络的基于规则的混沌梯度耦合学习算法.它有效地利用了梯度下降算法的快速性和混沌寻优的全局性,并已应用于工程实际,取得了良好的效果.
推荐文章
基于DSP的混沌BP神经网络的实现
DSP
混沌
BP神经网络
基于混沌蚁群算法的BP神经网络训练研究
群智能
混沌蚁群算法
BP神经网络
变尺度混沌算法的BP网络优化
误差反向传播算法
梯度下降法
局部极小
混沌优化
变尺度混沌优化算法
基于混沌与改进BP神经网络的电价预测方法
电力市场
神经网络
混沌
电价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌梯度的BP网络设计及应用
来源期刊 计算机工程与应用 学科 工学
关键词 混沌优化 神经网络 梯度搜索
年,卷(期) 2003,(19) 所属期刊栏目 博士论坛
研究方向 页码范围 29-30,50
页数 3页 分类号 TP301.6
字数 3233字 语种 中文
DOI 10.3321/j.issn:1002-8331.2003.19.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
2 彭小奇 中南大学物理科学与技术学院 112 1229 18.0 30.0
3 胡志坤 中南大学信息科学与工程学院 97 1006 17.0 26.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (13)
同被引文献  (17)
二级引证文献  (30)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2005(3)
  • 引证文献(3)
  • 二级引证文献(0)
2006(3)
  • 引证文献(1)
  • 二级引证文献(2)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(4)
  • 引证文献(2)
  • 二级引证文献(2)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(3)
  • 引证文献(1)
  • 二级引证文献(2)
2011(4)
  • 引证文献(1)
  • 二级引证文献(3)
2012(5)
  • 引证文献(0)
  • 二级引证文献(5)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
混沌优化
神经网络
梯度搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导