作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前基于高斯牛顿法及其衍生算法的前馈神经网络虽然可以达到局部二阶收敛速度,但只对小残量或零残量问题有效,对大残量问题则收敛很慢甚至不收敛.为了实时解决神经网络学习过程中可能遇到的小残量问题和大残量问题,引入NL2SOL优化算法,并与GaussNewton法相结合,构建基于GaussNewton-NL2SOL法的前馈神经网络.仿真实例表明,该神经网络较好地解决了残量问题,具有良好的收敛性和稳定性.
推荐文章
基于 ELM 的跨越前馈神经网络及其应用研究
神经网络
跨越连接
极速学习机
倒立摆系统
基于前馈神经网络的潮汐预报
前馈神经网络
感知器
潮汐
预报
基于动量项前馈神经网络盲均衡算法
盲均衡
前馈神经网络
动量项
基于差异进化算法的前馈神经网络在大坝变形监测中的应用
大坝变形监测
差异进化算法
前馈神经网络
BP神经网络
回归模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GaussNewton-NL2SOL法的前馈神经网络及应用
来源期刊 重庆大学学报(自然科学版) 学科 工学
关键词 前馈神经网络 GaussNewton法 NL2SOL法 残量问题 收敛性 稳定性
年,卷(期) 2004,(4) 所属期刊栏目
研究方向 页码范围 118-121
页数 4页 分类号 TP18
字数 3473字 语种 中文
DOI 10.3969/j.issn.1000-582X.2004.04.030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐晋 上海交通大学管理学院 64 1942 24.0 43.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (38)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(2)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(3)
  • 引证文献(3)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
前馈神经网络
GaussNewton法
NL2SOL法
残量问题
收敛性
稳定性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导