基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是基于统计学习理论的新一代学习机器.它使用结构风险最小化原则,运用核技巧,较好地解决了学习问题.本文提出了一种基于支持向量机的加权算法,并将其应用于证券,指数预测.与径向基神经网络相比较,加权支持向量机表现出了良好的性能.
推荐文章
快速增量加权支持向量机预测证券指数
支持向量机
增量学习
证券指数预测
相空间重构
加权支持向量机求解路径算法研究
求解路径
支持向量回归
加权系数
支持向量机在时间序列预测中的应用
支持向量机
BP神经网络
时间序列预测
支持向量机在GDP回归预测中的应用研究
支持向量机
数据挖掘
国民生产总值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 加权支持向量机在证券指数预测中的研究
来源期刊 经济数学 学科 经济
关键词 支持向量回归 加权支持向量机 证券指数
年,卷(期) 2005,(2) 所属期刊栏目
研究方向 页码范围 150-153
页数 4页 分类号 F8
字数 2097字 语种 中文
DOI 10.3969/j.issn.1007-1660.2005.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱思铭 中山大学数学与计算科学学院 94 573 13.0 20.0
2 奉国和 中山大学数学与计算科学学院 6 94 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (23)
同被引文献  (0)
二级引证文献  (0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2007(3)
  • 引证文献(3)
  • 二级引证文献(0)
2008(4)
  • 引证文献(4)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(4)
  • 引证文献(4)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量回归
加权支持向量机
证券指数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
经济数学
季刊
1007-1660
43-1118/O1
16开
湖南省长沙市岳麓山湖南大学期刊社
42-364
1984
chi
出版文献量(篇)
1569
总下载数(次)
11
总被引数(次)
8356
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导