基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(Support Vector Machine.SVM)应用结构风险最小化理论,从训练集中选择一组特征子集。使得对特征子集的线性划分等价于对整个数据集的分割。支持向量机最初应用于模式识别,随后开始在信号处理、函数逼近等领域也得到了广泛发展。支持向量机与神经网络等常用方法相比,其具有泛化性好、建模所需学习数据较少等优点。
推荐文章
基于差分进化算法-最小二乘支持向量机的软测量建模
软测量
最小二乘支持向量机
差分进化算法
对羧基苯甲醛
基于稀疏最小二乘支持向量机的软测量建模
遗传算法
参数识别
整体优化
软测量
最小二乘支持向量机
4-CBA含量
鲁棒最小二乘支持向量机及其在软测量中的应用
模糊C均值聚类
密度加权
鲁棒最小二乘支持向量机
磨机负荷
混沌最小二乘支持向量机及其在发酵过程建模中的应用
混沌
最小二乘支持向量机
建模
青霉素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最小二乘支持向量机在软测量建模中的应用
来源期刊 世界仪表与自动化 学科 工学
关键词 最小二乘支持向量机 软测量 丙烯腈 建模 数据预处理
年,卷(期) 2005,(5) 所属期刊栏目
研究方向 页码范围 55-56
页数 2页 分类号 TQ325.8
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋爱平 华东理工大学信息学院 9 22 3.0 4.0
2 邸真珍 华东理工大学信息学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
软测量
丙烯腈
建模
数据预处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
世界仪表与自动化
月刊
1028-1150
北京宣武门西大街甲129号金隅大厦180
出版文献量(篇)
3772
总下载数(次)
6
总被引数(次)
0
论文1v1指导