基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
总结了自组织神经网络的结构、训练方法;分析了在多目标跟踪问题中数据关联的重要性及传统的数据关联方法的局限性;研究了在多目标环境下运用自组织神经网络解决数据关联的问题.提出了一种基于自组织神经网络对多个目标实施跟踪的算法,此算法采用自组织神经网络的聚类功能对目标进行数据关联处理,并将经过卡尔曼滤波后的数据信息结合到神经网络的学习训练中.仿真实验结果表明此算法能在多目标环境下取得较好的跟踪效果.
推荐文章
自组织多目标粒子群优化算法
多目标粒子群优化
自组织映射
种群分布
精英学习策略
一种改进的结构自适应自组织神经网络算法
聚类
分类
神经元网络
结构自适应神经网络
基于EKF的模糊神经网络快速自组织学习算法
模糊神经网络
扩展卡尔曼滤波
自组织学习
基于粗糙集和自组织神经网络的聚类方法
自组织神经网络
粗糙集
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 运用自组织神经网络进行多目标跟踪的算法
来源期刊 现代雷达 学科 工学
关键词 多目标跟踪 数据关联 神经网络 卡尔曼滤波
年,卷(期) 2005,(1) 所属期刊栏目 信号与数据处理
研究方向 页码范围 24-28
页数 5页 分类号 TN953|TN713+.1
字数 3615字 语种 中文
DOI 10.3969/j.issn.1004-7859.2005.01.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱晓红 9 50 4.0 7.0
2 林岚 2 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (11)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (6)
二级引证文献  (12)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(3)
  • 引证文献(0)
  • 二级引证文献(3)
2011(2)
  • 引证文献(0)
  • 二级引证文献(2)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多目标跟踪
数据关联
神经网络
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代雷达
月刊
1004-7859
32-1353/TN
大16开
南京3918信箱110分箱
28-288
1979
chi
出版文献量(篇)
5197
总下载数(次)
19
总被引数(次)
32760
论文1v1指导