基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种贝叶斯网络结构复合学习算法.该算法将EM算法、蒙特卡罗抽样算法、进化算法结合起来,用EM算法、蒙特卡罗抽样算法将不完整的数据集转换成完备的数据集,再利用进化算法进化网络结构.这种算法能够克服EM算法容易陷入局部最大值的缺陷,对于缺省数据处理是基于后验网络的,网络结构随进化计算不断优化,得到的补充数据可信度比较高,网络学习效率高、运算性能好.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于进化计算的贝叶斯网络结构复合学习算法
来源期刊 中北大学学报 学科 工学
关键词 贝叶斯网络 结构学习 EM算法 蒙特卡罗抽样算法 进化算法 复合算法 不完整数据集
年,卷(期) 2006,(6) 所属期刊栏目 自动化与计算机技术
研究方向 页码范围 500-503
页数 4页 分类号 TP18
字数 2559字 语种 中文
DOI 10.3969/j.issn.1673-3193.2006.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李海军 海军航空工程学院兵器科学与技术系 66 205 8.0 11.0
2 刘霄 烟台大学计算机学院 10 17 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
EM算法
蒙特卡罗抽样算法
进化算法
复合算法
不完整数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中北大学学报(自然科学版)
双月刊
1673-3193
14-1332/TH
大16开
太原13号信箱
1979
chi
出版文献量(篇)
2903
总下载数(次)
7
论文1v1指导