基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法.该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利用改进的变异算子与交叉算子构建樽海鞘搜索策略与差分搜索策略,更新不同的子种群,在合并子种群阶段利用两点变异算子增加种群多样性.由算法的收敛性分析可知,通过种群的迭代搜索可以找到最佳结构.实验结果表明,与其他算法相比,所提算法收敛精度与寻优效率均有提升.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法
来源期刊 通信学报 学科 工学
关键词 贝叶斯网络结构学习 樽海鞘算法 差分进化算法 自适应
年,卷(期) 2019,(7) 所属期刊栏目 学术论文
研究方向 页码范围 151-161
页数 11页 分类号 TP18
字数 8653字 语种 中文
DOI 10.11959/j.issn.1000-436x.2019124
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (36)
参考文献  (17)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(8)
  • 参考文献(8)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络结构学习
樽海鞘算法
差分进化算法
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导