基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据发动机的结构特点,将其表面划分成不同的测试区域进行声强信号采集;依据声强特征,确定不同区域对应零部件的工作状况;利用模块化神经网络,建立基于声强特征的故障诊断模型,该模型中包含发动机低速与中速诊断模块、决策模块和故障知识库;在建模过程中,利用特征函数强化故障特征作为网络输入.结果表明,该方法具有诊断精度高、速度快、实时自学习等特点,为建立更为完善的发动机智能化故障诊断系统提供新途径.
推荐文章
基于改进的LVQ神经网络的发动机故障诊断
改进的LVQ神经网络
发动机
故障诊断
神经元
基于PNN神经网络的电控发动机故障诊断
PNN神经网络
发动机
电控系统
故障诊断
基于BP神经网络的电控发动机故障诊断
汽车发动机
电控系统
BP神经网络
故障诊断
基于粒子群神经网络的发动机故障诊断
粒子群
神经网络
汽车发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于声强与神经网络技术的发动机故障诊断
来源期刊 汽车工程 学科 交通运输
关键词 声强 神经网络 发动机 故障诊断
年,卷(期) 2006,(4) 所属期刊栏目 论文
研究方向 页码范围 401-404
页数 4页 分类号 U4
字数 3334字 语种 中文
DOI 10.3321/j.issn:1000-680X.2006.04.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常思勤 南京理工大学机械工程学院 153 1220 19.0 23.0
2 魏少华 南京理工大学机械工程学院 7 46 5.0 6.0
3 陈效华 南京理工大学机械工程学院 29 256 8.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (8)
同被引文献  (16)
二级引证文献  (19)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(3)
  • 引证文献(3)
  • 二级引证文献(0)
2008(3)
  • 引证文献(1)
  • 二级引证文献(2)
2010(2)
  • 引证文献(0)
  • 二级引证文献(2)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
声强
神经网络
发动机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导