聚类分析是后基因组时代基因表达数据处理的主要技术之一.聚类确认是聚类分析过程中的必要环节,其目的是对聚类结果的质量和聚类算法的性能进行评估,有助于聚类结果的注释.选择有效的确认函数是正确评价聚类结果的前提.文中采用分层聚类、K-均值聚类和SOMs算法对标准基因表达数据集进行聚类分析,研究了Silhouette指数、Dunn's指数、Davies-Bouldin指数及FOM(Figure of merit)测量等内部确认函数在基因聚类分析中评价聚类结果质量的有效性.结果表明:Silhouette指数和FOM测量能较好地反映聚类算法的性能和聚类结果的质量,Dunn's指数因其对噪声的高度敏感性不能直接用于基因聚类结果的确认,Davies-Bouldin指数确认算法的能力好于Dunn's指数,但偏爱单连接聚类.上述研究结论将为基因聚类分析中聚类算法的评估与聚类结果的确认提供有价值的参考依据.