基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于模型辨识的机械有效故障特征提取方法中输入信号难以确定,以及机械设备运行过程中具有信息量大、非平稳、特征重复再现性差的特点,结合非线性时序模型盲辨识和因子隐Markov模型,提出一种基于非线性时序模型盲辨识的特征提取的因子隐Markov模型识别方法,并应用到旋转机械升降速过程故障诊断中.同时还与基于Fourier变换、小波变换的特征提取的因子隐Markov模型识别方法进行比较,试验结果表明该方法是有效的.
推荐文章
基于非线性自回归时序模型的振动系统辨识
非线性自回归时序模型
振动系统
弱非线性
频率辨识
主分量分析和因子隐Markov模型在机械故障诊断中的应用
主分量分析
因子隐Markov模型
冗余消除
故障诊断
模式识别
基于DEAFCR算法的非线性系统模型参数辨识
DEAFCR算法
非线性系统
参数辨识
优化算法
寿命机制
基于隐马尔可夫模型的3D手写识别方法
手写识别
加速度传感器
隐马尔可夫模型
快速傅里叶变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于非线性时序模型盲辨识的因子隐Markov模型识别方法
来源期刊 机械工程学报 学科 工学
关键词 盲系统辨识 因子隐Markov模型(FHMM) 故障诊断 非线性时间序列 模式识别
年,卷(期) 2007,(1) 所属期刊栏目 工程技术应用
研究方向 页码范围 191-195,201
页数 6页 分类号 TH17
字数 4388字 语种 中文
DOI 10.3321/j.issn:0577-6686.2007.01.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴昭同 浙江大学现代制造工程研究所 177 4029 36.0 52.0
2 韩捷 郑州大学振动工程研究所 196 1599 19.0 30.0
3 李志农 郑州大学振动工程研究所 66 582 13.0 19.0
4 褚福磊 清华大学精密仪器与机械学系 191 4102 37.0 56.0
5 郝伟 郑州大学振动工程研究所 61 651 16.0 23.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (3)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (9)
二级引证文献  (30)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(9)
  • 引证文献(3)
  • 二级引证文献(6)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
盲系统辨识
因子隐Markov模型(FHMM)
故障诊断
非线性时间序列
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程学报
半月刊
0577-6686
11-2187/TH
大16开
北京百万庄大街22号
2-362
1953
chi
出版文献量(篇)
12176
总下载数(次)
57
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导