基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于小波变换和支持向量机的图像分类新方法,该方法利用小波变换进行图像特征提取,利用支持向量机进行图像分类,并与基于图像底层特征的分类方法进行了实验比较.实验结果表明该方法具有较好的分类性能.
推荐文章
基于小波变换和支持向量机的人脸检测
人脸检测
小波变换
支持向量机
基于复小波和支持向量机的纹理分类法
小波变换
二元树复小波变换
特征提取
支持向量机
纹理分类
基于小波变换和支持向量机的彩色纹理识别
纹理
彩色空间
小波变换(WT)
支持向量机(SVM)
纹理识别
基于连续小波变换和支持向量机的手动想象脑电分类
连续小波变换
支持向量机
运动想象
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换和支持向量机的图像分类
来源期刊 河北大学学报(自然科学版) 学科 工学
关键词 图像 图像分类 特征提取 小波变换 支持向量机
年,卷(期) 2007,(3) 所属期刊栏目 研究报告
研究方向 页码范围 317-321
页数 5页 分类号 TP391
字数 803字 语种 中文
DOI 10.3969/j.issn.1000-1565.2007.03.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王熙照 河北大学数学与计算机学院 88 1286 18.0 32.0
2 翟俊海 河北大学数学与计算机学院 45 256 9.0 12.0
3 张素芳 河北省信息工程学校数学教研室 10 86 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (11)
二级引证文献  (37)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(5)
  • 引证文献(0)
  • 二级引证文献(5)
2014(7)
  • 引证文献(2)
  • 二级引证文献(5)
2015(8)
  • 引证文献(0)
  • 二级引证文献(8)
2016(7)
  • 引证文献(0)
  • 二级引证文献(7)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像
图像分类
特征提取
小波变换
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北大学学报(自然科学版)
双月刊
1000-1565
13-1077/N
大16开
河北省保定市五四东路180号
18-257
1962
chi
出版文献量(篇)
2682
总下载数(次)
9
总被引数(次)
15416
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导