原文服务方: 湖南大学学报(自然科学版)       
摘要:
提出了一种基于Curvelet变换与小波变换相结合的纹理图像分类算法.小波变换在分析点奇异信号时具有良好的性能,而Curvelet变换更适合分析图像中的曲线或直线状边缘特征.算法通过提取两者分解子波段的统计学和灰度共生矩阵特征,采用支持向量机对纹理图像进行分类.实验结果表明,和单一的多分辨率变换特征提取相比,该算法具有更高的分类准确率.
推荐文章
基于提升小波变换的火灾图像识别
火灾图像
边缘检测
提升小波
火灾识别
基于Gabor小波变换的ICA火灾图像纹理识别算法
火灾图像纹理
独立成分分析
Gabor小波变换
支持向量机
基于小波变换和支持向量机的彩色纹理识别
纹理
彩色空间
小波变换(WT)
支持向量机(SVM)
纹理识别
EMD-SVM在纹理图像识别中的应用
经验模式分解
支持向量机
固有模式函数
纹理识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Curvelet和小波变换的纹理图像识别
来源期刊 湖南大学学报(自然科学版) 学科
关键词 小波变换 Curvelet变换 纹理分类 支持向量机
年,卷(期) 2008,(4) 所属期刊栏目 机电工程
研究方向 页码范围 51-54
页数 4页 分类号 TU323
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李树涛 湖南大学电气与信息工程学院 41 1574 15.0 39.0
2 孙凤梅 湖南大学电气与信息工程学院 7 120 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (5)
二级引证文献  (6)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波变换
Curvelet变换
纹理分类
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导