基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据融合方法通过提取各个影响因素之间的特征关系,进行数据之间的融合.针对因传感器故障而失真的数据,综合考虑对畜禽场排放的某一废气测量值的时间、空间和环境等多种影响因素,使用基于神经网络的数据融合方法来估算该废气的浓度,实现失真数据的恢复,从而精确地测量出养殖场连续排放的有害气体的总量,对超标排放进行监控.以氨气(NH3)浓度数据的处理为例,应用MATLAB软件,其仿真结果表明:估算最大相对误差为7.83%,证明基于神经网络的数据融合方法的有效性.
推荐文章
小波神经网络多传感器信息融合在AUV深度测量中的应用
自主式水下航行器(AUV)
深度传感器
多传感器信息融合
小波神经网络
测量精度
基于神经网络和证据理论的信息融合在故障诊断中的应用
信息融合
人工神经网络
证据理论
故障诊断
基于T-S模糊神经网络的信息融合在赤潮预测预警中的应用
赤潮
预测预警
信息融合
T-S模糊神经网络
基于神经网络的双模复合制导数据融合
双模复合制导
数据融合
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的数据融合在废气测量中的应用
来源期刊 中国安全科学学报 学科 地球科学
关键词 广义回归神经网络(GRNN) 数据融合 禽畜养殖场 废气 缺失数据
年,卷(期) 2007,(6) 所属期刊栏目 安全管理工程
研究方向 页码范围 162-165
页数 4页 分类号 X701|TP183
字数 2472字 语种 中文
DOI 10.3969/j.issn.1003-3033.2007.06.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李丽 江苏大学电气信息工程学院 49 80 4.0 7.0
2 朱伟兴 江苏大学电气信息工程学院 130 1640 21.0 35.0
3 庞敏 江苏大学电气信息工程学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (34)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (12)
二级引证文献  (7)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
广义回归神经网络(GRNN)
数据融合
禽畜养殖场
废气
缺失数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国安全科学学报
月刊
1003-3033
11-2865/X
大16开
北京市东城区和平里九区甲4号安信大厦A306室
1991
chi
出版文献量(篇)
6482
总下载数(次)
26
总被引数(次)
114972
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导