原文服务方: 科技与创新       
摘要:
由于传统的心音听诊就是凭医生的经验用听觉分析心音信号,不能满足医学上所要求的高精确度性能而且听诊技能要花多年时间才能掌握,针对这些弊端本文提出了一种新的心音诊断方法.它对电子听诊器录制的心音数据,经过去噪预处理后用小波变换进行分析并提取特征值,再将选取的特征值输入到前馈型神经网络进行训练和识别.实验中我们用节点数分别为9,5,5的BP神经网络能成功识别出主动脉关闭不全,主动脉狭窄,二尖瓣关闭不全,二尖瓣狭窄,和正常心音五类心音,能为相应心脏疾病的诊断提供有力的依据,为临床应用提供有效的分析手段.
推荐文章
基于小波分析和神经网络的模拟电路故障诊断方法
小波分析
神经网络
模拟电路
故障诊断
基于小波分析与神经网络的交通流短时预测方法
小波分析
小波神经元网络
交通流
短时预测
基于小波分析与概率神经网络的化工过程故障诊断
故障诊断
概率神经网络
Haar小波
TE过程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工神经网络及小波分析的心音诊断方法
来源期刊 科技与创新 学科
关键词 心音 小波变换 特征值选取 神经网络
年,卷(期) 2007,(19) 所属期刊栏目 软件天地
研究方向 页码范围 311-312,302
页数 3页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1008-0570.2007.19.127
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (24)
参考文献  (2)
节点文献
引证文献  (14)
同被引文献  (2)
二级引证文献  (6)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
心音
小波变换
特征值选取
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技与创新
半月刊
2095-6835
14-1369/N
大16开
2014-01-01
chi
出版文献量(篇)
41653
总下载数(次)
0
总被引数(次)
202805
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导