在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构.支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器.为此,提出一种增强的LLE(Locally Linear Em-bedding)和SVM(SuppoR Vector Machine)结合的人像识别方法,采用PCA(Principal Component Analysis)与眦相结合算法,对光照归一化处理过的人脸图像进行特征提取,利用SVM的分类机制对人脸图像样本集进行训练和识别.在ORL(Olivetti Research laboratory)人脸数据库上实验表明,该算法稳健、快速,识别率达到了90%以上.