作者:
原文服务方: 信息与控制       
摘要:
讨论和比较了现有的几种多类SVM方法.在此基础上,提出了一种组合多个两类分类器结果的多类SVM决策方法.在该方法中,定义了新的决策函数,其值是在传统投票决策值的基础上乘以不同分类器的权重.新的多类SVM在一定程度上解决了传统投票决策方法的不可分区域问题,因此具有更好的分类性能.最后,将新方法作为关键技术应用于故障诊断实例,实际诊断结果证明了所提多类SVM决策方法的优越性.
推荐文章
一种新的基于ART的支持向量机多类分类方法
支持向量机(SVM)
多类分类
核函数
自适应共振理论(ART)网络
一种新的支持向量机多类分类方法
支持向量机
分类
二叉树
迭代算法
一种改进的支持向量机多类分类方法
支持向量机
多类分类
二叉树
多类支持向量机
一种设计层次支持向量机多类分类器的新方法
支持向量机
多类分类
层次结构
类间可分性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的多类支持向量机决策方法及其应用
来源期刊 信息与控制 学科
关键词 多类支持向量机 投票法 策略 不可分区域
年,卷(期) 2008,(6) 所属期刊栏目 论文与报告
研究方向 页码范围 647-652
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2008.06.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓红 九江学院江西省数控技术与应用重点实验室 22 152 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (4)
同被引文献  (4)
二级引证文献  (30)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(5)
  • 引证文献(0)
  • 二级引证文献(5)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(7)
  • 引证文献(1)
  • 二级引证文献(6)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
多类支持向量机
投票法
策略
不可分区域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
总被引数(次)
41289
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导