基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脑电信号是一种典型的非平稳随机信号,对脑电信号的分类识别是非常困难的,为了提高正确识别率,提出多导脑电信号的分类识别方法.首先对受试者分别在睁眼和闭眼状态下的单导脑电信号进行特征提取,然后选取多组识别效果不好的单导联的特征,组合成为多导脑电信号特征,最后用RBF核函数的支持向量机分类器进行分类识别.结果表明对多导联特征的正识率比单导联正识率有很大提高.
推荐文章
基于特征向量法和支持向量机的抑郁症脑电信号分类
特征向量法
分类
支持向量机
抑郁症
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
基于经验模态分解和SVM的脑电信号分类方法
脑电信号分类
经验模态分解
支撑向量机
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF核函数支持向量机分类器的多导脑电信号分类识别研究
来源期刊 机电工程技术 学科 工学
关键词 脑电信号 多导联 支持向量机 正识率
年,卷(期) 2008,(8) 所属期刊栏目 研究与开发
研究方向 页码范围 73-75
页数 3页 分类号 TP181
字数 2822字 语种 中文
DOI 10.3969/j.issn.1009-9492.2008.08.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王学军 中州大学信息工程学院 6 15 3.0 3.0
2 张海军 38 229 9.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (8)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (2)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
多导联
支持向量机
正识率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电工程技术
月刊
1009-9492
44-1522/TH
大16开
广州市天河北路663号
46-224
1971
chi
出版文献量(篇)
11098
总下载数(次)
46
总被引数(次)
29526
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导