基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊c均值聚类已广泛应用于模糊模式识别领域,但对于线性不可分数据并不适用.在核方法中通过将输入数据经过非线性映射投影到高维特征空间来解决非线性分类的问题.将传统的模糊c均值聚类算法应用于核空间中,对线性不可分的样本进行了核空间聚类的分类实验,得到了正确的分类结果.由于图像分类中分类样本(对应图像像素)数目庞大,造成了核空间聚类算法中特征距离的计算量过大.因此,在核空间聚类的基础上,提出了对图像先进行过分割,再对过分割的图像块进行核空间聚类的方法,大大降低了高维空间特征距离计算的运算成本,并取得了良好的分类效果.
推荐文章
层次聚类结合空间金字塔的图像分类
层次聚类
信息熵
空间金字塔模型
图像分类
K-means聚类
核空间局部自适应模糊C-均值聚类图像分割算法
自适应中值算法
模糊C-均值聚类
核函数
局部空间信息
基于两种纹理特征聚类的图像检索
基于内容的图像检索
分形维数[1]
索引
聚类
改进的空间约束加权模糊核聚类红外图像分割
红外图像分割
加权模糊核聚类
空间约束
类别权重可靠性指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 核空间聚类在图像纹理分类中的简化算法
来源期刊 北京航空航天大学学报 学科 工学
关键词 图像分割 纹理分类 核方法 模糊c均值聚类
年,卷(期) 2008,(3) 所属期刊栏目
研究方向 页码范围 267-270,294
页数 5页 分类号 TP751
字数 3192字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 成功 北京航空航天大学电子信息工程学院 7 57 5.0 7.0
2 袁运能 北京航空航天大学电子信息工程学院 24 149 7.0 11.0
3 吴央 北京航空航天大学电子信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分割
纹理分类
核方法
模糊c均值聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京航空航天大学学报
月刊
1001-5965
11-2625/V
大16开
北京市海淀区学院路37号
1956
chi
出版文献量(篇)
6912
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导