作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
序列图像中运动目标跟踪的有效性和鲁棒性是一个非常富有挑战性的课题。为提高在运动背景条件下视觉目标跟踪的性能,克服复杂环境对跟踪算法准确性的影响,提出了一种基于粒子滤波和在线训练支持向量机的目标跟踪新方法。从目标的特征描述和提取着手,引入了积分直方图快速提取特征的方法,加快粒子滤波器运行速度,满足一定的实时性要求。同时,分析了运动背景条件下具有代表性的跟踪算法的本质和特性,结合目标识别创新性地提出在线训练支持向量机的方法,通过在线识别信息和跟踪信息的融合保证算法具备较强的鲁棒性。实验结果表明,该算法能有效的解决动态背景条件下遮挡、光照变化和运动模糊等复杂情况下,对目标进行准确、有效、近乎实时的跟踪。
推荐文章
支持向量机和AdaBoost目标跟踪新方法
目标识别
支持向量机
AdaBoost
Harr特征
基于支持向量机的磁化曲线拟合新方法
变压器
支持向量机
磁化曲线
仿真
基于融合特权信息支持向量机的模拟电路故障诊断新方法
特征提取
特权信息支持向量机
模拟电路
故障诊断
基于粒子群优化粒子滤波的目标跟踪方法
粒子滤波
粒子群优化
均值漂移
有效粒子数
重采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波和在线训练支持向量机的目标跟踪新方法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 目标跟踪 粒子滤波 支持向量机 积分直方图
年,卷(期) 2008,(11Z) 所属期刊栏目
研究方向 页码范围 1190-1193
页数 4页 分类号 TP391.41
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑建宾 同济大学软件学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
粒子滤波
支持向量机
积分直方图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导