基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用小波和神经网络对木质材料中密度纤维板的不同缺陷进行智能模式识别,研究采用Daubechies小波包对振动信号进行3层分解,计算信号在各频段所占的能量率,并以此作为样本对拓扑结构不同的BP神经网络进行训练,然后利用训练好的网络对缺陷的种类进行分类识别.结果表明,性质相近的两种贫胶缺陷应作为一类缺陷模式进行识别,单隐层和双隐层的BP网络对没有缺陷、鼓泡缺陷和贫胶缺陷3种模式的识别都很理想,但双隐层BP网络的推广性能较好.网络输出的波动性小.对中密度纤维板没有缺陷、鼓泡缺陷和贫胶缺陷智能识别的最佳网络是双层BP网络,网络第1隐层节点和第2隐层节点分别为20和6,对中密度纤维板缺陷模式识别的准确率为90%.
推荐文章
基于小波-神经网络技术的电机故障模式识别与诊断
小波包
ART2神经网络
故障模式识别
基于小波混沌神经网络的语音识别
语音识别
小波变换
混沌
神经网络
基于小波神经网络的信号识别
信号分选与识别
小波分析
神经网络
小波神经网络
基于无监督神经网络的故障模式识别
无监督神经网络
模式识别
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的木质材料缺陷模式识别
来源期刊 振动、测试与诊断 学科 工学
关键词 小波神经网络 木质材料 缺陷 模式识别
年,卷(期) 2009,(3) 所属期刊栏目 论文
研究方向 页码范围 274-277
页数 4页 分类号 TS67|TH16
字数 3528字 语种 中文
DOI 10.3969/j.issn.1004-6801.2009.03.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王逢瑚 东北林业大学生物质材料科学与技术教育部重点实验室 154 1178 17.0 25.0
2 曹军 东北林业大学生物质材料科学与技术教育部重点实验室 133 1090 17.0 23.0
3 孙建平 东北林业大学生物质材料科学与技术教育部重点实验室 46 381 12.0 16.0
4 胡英成 东北林业大学生物质材料科学与技术教育部重点实验室 32 365 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (28)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (42)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(7)
  • 引证文献(1)
  • 二级引证文献(6)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(10)
  • 引证文献(0)
  • 二级引证文献(10)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
小波神经网络
木质材料
缺陷
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动、测试与诊断
双月刊
1004-6801
32-1361/V
南京市御道街29号
chi
出版文献量(篇)
2937
总下载数(次)
3
论文1v1指导