原文服务方: 海洋环境科学       
摘要:
针对海湾初级生产力估算与预测难题,结合大亚湾近20 a的调查资料,基于MATLAB语言编程,将NH_4-N、NO_-N、NO_2-N、PO_4-P、SiO_3-Si、N/P作为输入,叶绿素a作为输出,建立大亚湾初级生产力的人工神经网络预测模型,并进行检验,其模拟值的平均相对误差0.932%;同时应用多元回归方法进行拟合预测,其拟合结果的平均相对误差为38.970%.研究结果表明,人工神经网络方法优于传统的统计学模型,具有较好的预测能力和实用性,可进行海湾初级生产力动态的预测估算,并具有较高的精度.
推荐文章
基于人工神经网络的经济预测模型
改进BP算法
神经网络
GDP
时间序列
基于人工神经网络的浮游植物密度预测模型研究
人工神经网络
浮游植物
赤潮
预测
基于人工神经网络的卵巢早衰预测模型研究
原发性卵巢功能不全
卵巢功能早衰
神经网络(计算机)
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大亚湾初级生产力人工神经网络预测模型研究
来源期刊 海洋环境科学 学科
关键词 初级生产力 人工神经网络 预测 大亚湾
年,卷(期) 2009,(6) 所属期刊栏目 调查与研究
研究方向 页码范围 652-656
页数 5页 分类号 Q141
字数 语种 中文
DOI 10.3969/j.issn.1007-6336.2009.06.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (174)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (36)
二级引证文献  (20)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(13)
  • 参考文献(2)
  • 二级参考文献(11)
2000(9)
  • 参考文献(0)
  • 二级参考文献(9)
2001(9)
  • 参考文献(1)
  • 二级参考文献(8)
2002(11)
  • 参考文献(1)
  • 二级参考文献(10)
2003(8)
  • 参考文献(2)
  • 二级参考文献(6)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(4)
  • 引证文献(3)
  • 二级引证文献(1)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(7)
  • 引证文献(1)
  • 二级引证文献(6)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
初级生产力
人工神经网络
预测
大亚湾
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
海洋环境科学
双月刊
1007-6336
21-1168/X
大16开
1982-01-01
chi
出版文献量(篇)
3212
总下载数(次)
0
总被引数(次)
36400
论文1v1指导