基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
有限高斯混合模型是广泛应用于聚类分析与分布估计的概率模型之一,同样在脑部MR图像分割领域获得了广泛应用.利用高斯混合模型可以描述大脑图像,通过期望最大算法求解随机变量的特征值,并用其对图像上的点进行分类,可以在一定程度上解决脑图像分割问题.针对含脉冲噪声的大脑图像,首先利用改进的滤波方法对图像进行滤波,再利用粒子群改进算法的全局优化特性求解高斯混合模型的参数,这样避免了EM算法易陷入局部极值的现象,以提高参数精度,从而进一步提高分割质量.
推荐文章
一种基于高斯混合模型的MR图像分割
高斯混合模型
EM算法
图像分割
图像修复
结构张量
基于混合高斯模型MRF场的CT图像分割
工业CT图像
混合高斯模型
马尔科夫模型
图像分割
基于高斯混合模型的纹理图像的分割
高斯混合模型
EM算法
最大似然估计
利用高斯混合体模型和EM算法分割彩色图像
高斯混合体
EM算法
图像分割
随机变量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高斯混合模型的人脑MR图像分割新算法研究
来源期刊 计算机应用与软件 学科 工学
关键词 图像分割 高斯混合模型 粒子群优化算法 EM算法
年,卷(期) 2009,(3) 所属期刊栏目 算法
研究方向 页码范围 246-248,264
页数 4页 分类号 TP3
字数 4903字 语种 中文
DOI 10.3969/j.issn.1000-386X.2009.03.087
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张建伟 南京信息工程大学数理学院 86 725 15.0 21.0
2 朱泉同 南京信息工程大学数理学院 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (68)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (11)
二级引证文献  (6)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像分割
高斯混合模型
粒子群优化算法
EM算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导