基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于特征向量的实体关系抽取方法中特征向量一般构造方法存在的不足,提出了基于互信息的实体对特征向量构造方法.该方法引入词和实体关系类别之间的互信息作为一个句子中实体对左右两边上下文特征提取的判断标准,并对实体关系类别特征词条进行编码,在此基础上再对实体对左右两边的上下文信息进行编码.这样做压缩了实体对上下文信息编码的维数,突出了实体关系各类别特性.实验结果表明本文的实体关系特征向量构造方法提高了中文实体关系抽取的准确率和召回率.
推荐文章
实体词语义信息对中文实体关系抽取的作用研究
《同义词词林》
知网
树核函数
关系抽取
融合语句-实体特征与Bert的中文实体关系抽取模型
自然语言处理
关系抽取
深度学习
BERT
Transformer
中文实体关系抽取研究综述
中文实体关系抽取
有监督方法
无监督方法
半监督方法
开放域实体关系抽取方法
深度学习
中文嵌套命名实体关系抽取研究
嵌套实体关系抽取
信息抽取
支持向量机
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 中文实体关系抽取研究
来源期刊 计算机工程与设计 学科 工学
关键词 信息抽取 实体关系抽取 特征向量 互信息 支持向量机
年,卷(期) 2009,(15) 所属期刊栏目 人工智能
研究方向 页码范围 3587-3590
页数 4页 分类号 TP391
字数 4890字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 包宏 北京科技大学信息工程学院 29 192 7.0 13.0
2 牟晋娟 北京科技大学信息工程学院 1 16 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (95)
参考文献  (3)
节点文献
引证文献  (16)
同被引文献  (37)
二级引证文献  (9)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
信息抽取
实体关系抽取
特征向量
互信息
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导