基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
实体关系抽取是指从文本中发现两个实体之间的关系.提出一种新的基于语义核的中文实体关系抽取方法,在通常的序列核中嵌入语义信息,然后用改进后的k均值算法进行聚类.实验结果证明我们的方法是比较有潜力的.
推荐文章
融合语句-实体特征与Bert的中文实体关系抽取模型
自然语言处理
关系抽取
深度学习
BERT
Transformer
实体词语义信息对中文实体关系抽取的作用研究
《同义词词林》
知网
树核函数
关系抽取
中文实体关系抽取研究综述
中文实体关系抽取
有监督方法
无监督方法
半监督方法
开放域实体关系抽取方法
深度学习
基于特征选择的实体关系抽取
关系抽取
特征选择
信息增益
期望交叉熵
x2统计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的中文实体关系抽取方法
来源期刊 软件导刊 学科 工学
关键词 关系抽取 k均值 语义核
年,卷(期) 2011,(4) 所属期刊栏目 软件理论与方法
研究方向 页码范围 27-29
页数 分类号 TP301
字数 2667字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵雄凯 湖北工业大学计算机学院 39 123 7.0 9.0
2 刘建舟 湖北工业大学计算机学院 14 102 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (4)
同被引文献  (7)
二级引证文献  (41)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(26)
  • 引证文献(0)
  • 二级引证文献(26)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
关系抽取
k均值
语义核
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导