基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统独立分量分析(ICA)在人脸识别过程中存在的高维小样本问题,同时为了提高识别效率,提出了一种基于二维图像矩阵的独立分量分析(ICA)特征提取方法.该方法将人脸图像矩阵作为训练样本,首先利用主分量分析(PCA)对训练样本进行去二阶相关和降维处理,然后对处理后的样本进行ICA特征提取,由于训练样本维数很小,因此它降低了传统ICA方法中高维小样本问题产生的识别错误率,同时减少了识别时间.在Yale人脸库和ORL人脸库上验证了该算法的有效性.
推荐文章
基于小波变换和二维非负矩阵分解的人脸识别算法
二维离散小波变换
二维非负矩阵分解
人脸识别
图像融合
基于二维图像直接线性判别分析的人脸识别算法研究
线性判别分析
主分量分析
人脸识别
基于三维数据与MMSV特征的二维人脸识别
人脸识别
三维数据
二维虚拟图像
混合多尺度奇异值特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二维图像矩阵的ICA人脸识别
来源期刊 计算机工程与设计 学科 工学
关键词 二维 独立分量分析(ICA) 主分量分析(PCA) 特征提取 人脸识别
年,卷(期) 2009,(24) 所属期刊栏目 多媒体技术
研究方向 页码范围 5686-5688,5691
页数 4页 分类号 TP391
字数 3012字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈才扣 扬州大学信息工程学院 65 397 11.0 17.0
2 黄璞 扬州大学信息工程学院 4 59 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (12)
同被引文献  (15)
二级引证文献  (40)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(5)
  • 引证文献(2)
  • 二级引证文献(3)
2013(7)
  • 引证文献(3)
  • 二级引证文献(4)
2014(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(10)
  • 引证文献(2)
  • 二级引证文献(8)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(9)
  • 引证文献(0)
  • 二级引证文献(9)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
二维
独立分量分析(ICA)
主分量分析(PCA)
特征提取
人脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导