基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对光照变化情况下多遮挡目标的跟踪准确率差的问题,提出了一种基于优化M-S模型的鲁棒多目标跟踪算法.利用抗噪声性能高的优化M-S模型实现复杂环境下多目标精确识别与提取,降低模糊边缘、噪声的影响;利用区域像素标记方法建立目标和背景的边缘特征,在目标发生相互遮挡情况下也能够提取各个目标独立、完备的边缘特征.为了降低联合粒子滤波的计算复杂度,提高跟踪实时性,提出了简化联合滤波跟踪模型.仿真实验证明了该算法的正确性和有效性,与经典的差分跟踪算法、基于颜色特征的跟踪算法比较,对噪声边缘和变化光照环境敏感性降低,跟踪有效率统计分析表明鲁棒性提高1.82%,准确率提高1.36%.
推荐文章
多目标进化算法鲁棒性实验研究
多目标进化算法
鲁棒性
测试函数
鲁棒多目标线性规划模型及混合遗传算法
多目标线性规划
鲁棒优化
二阶锥规划
椭球扰动
混合策略算法
基于稀疏鲁棒M-投资选择模型的鲁棒Half算法
稀疏投资选择模型
Half阈值算法
稀疏鲁棒M-投资选择
L1/2正则化
鲁棒Half阈值算法
尺度自适应在线鲁棒目标跟踪
在线boosting
半监督学习
尺度自适应
权重图像
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化M-S模型的多目标鲁棒跟踪
来源期刊 哈尔滨工程大学学报 学科 工学
关键词 多目标跟踪 M-S模型 边缘特征 水平集 联合滤波
年,卷(期) 2010,(9) 所属期刊栏目
研究方向 页码范围 1228-1233
页数 分类号 TP391
字数 5602字 语种 中文
DOI 10.3969/j.issn.1006-7043.2010.09.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 印桂生 哈尔滨工程大学计算机科学与技术学院 113 842 16.0 23.0
2 苏洁 哈尔滨工程大学计算机科学与技术学院 4 10 2.0 3.0
6 魏振华 华北电力大学控制与计算机工程学院 10 27 3.0 4.0
7 刘亚辉 北京信息科技大学计算中心 28 34 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (16)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标跟踪
M-S模型
边缘特征
水平集
联合滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工程大学学报
月刊
1006-7043
23-1390/U
大16开
哈尔滨市南岗区南通大街145号1号楼
14-111
1980
chi
出版文献量(篇)
5623
总下载数(次)
16
总被引数(次)
45433
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导