基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决待识别目标的特征抽取问题,提出了一种脉冲耦合神经网络结合形状信息的图像混合特征抽取方法.该方法利用脉冲耦合神经网络将图像空域信号转化为时域信号的特性,结合物体形状信息,对图像的灰度和形状进行了统一描述.实验结果证明,该方法在一定程度上对物体的形变、平移、缩放不敏感,对目标识别系统是一种很好的特征抽取方法.
推荐文章
基于改进型脉冲耦合神经网络的图像分割方法
脉冲耦合神经网络
图像分割
图像熵
阈值
基于脉冲耦合神经网络提取图像边缘的新方法
脉冲耦合神经网络
二值图像
灰度图像
边缘提取
基于脉冲耦合神经网络的结构损伤检测方法研究
损伤检测
短时傅立叶变换
脉冲耦合神经网络
熵序列
特征提取
基于循环卷积神经网络的实体关系抽取方法研究
GRU
循环卷积神经网络
注意力机制
关系抽取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于脉冲耦合神经网络的目标特征抽取方法
来源期刊 吉林大学学报(信息科学版) 学科 工学
关键词 特征抽取 脉冲耦合 神经网络 混合特征
年,卷(期) 2010,(5) 所属期刊栏目
研究方向 页码范围 474-478
页数 分类号 TP183
字数 3187字 语种 中文
DOI 10.3969/j.issn.1671-5896.2010.05.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵祥模 长安大学信息工程学院 171 1125 16.0 25.0
2 惠飞 长安大学信息工程学院 46 305 10.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (1)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (2)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
特征抽取
脉冲耦合
神经网络
混合特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(信息科学版)
双月刊
1671-5896
22-1344/TN
大16开
长春市南湖大路5372号
1983
chi
出版文献量(篇)
2333
总下载数(次)
2
总被引数(次)
16807
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导