基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种融合边缘和区域信息的变分水平集合成孔径雷达图像分割方法.该方法不需要去除相干斑噪声的预处理过程,利用具有恒虚警特性的Ratio算子提取合成孔径雷达图像的边缘信息,并与无边缘活动轮廓模型结合建立合成孔径雷达图像分割能量泛函模型,通过最小化能量泛函得到曲线演化偏微分方程,采用变分水平集方法求解演化方程,实现了合成孔径雷达图像的分割.分别采用模拟和真实合成孔径雷达图像对该方法进行了验证,实验结果表明,该方法实现了合成孔径雷达图像中目标与背景的正确分割,具有较好的边缘定位能力.
推荐文章
SAR图像分割的G0A统计模型-水平集方法
SAR
G0A 统计模型
能量映射函数
水平集
多区域SAR图像
融合全局和局部信息的水平集乳腺MR图像分割
乳腺MRI
融合全局和局部信息
水平集
灰度不均匀
自适应指示函数
结合全局和局部信息的水平集图像分割方法
图像分割
图像噪声
拟合项
全局和局部信息
边缘检测算子
一种基于纹理特征融合的SAR图像分割方法
灰度共生矩阵
特征融合
双Markov模型
多分辨MPM
纹理分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合Ratio边缘信息的水平集SAR图像分割方法
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 合成孔径雷达 图像分割 水平集 边缘信息 偏微分方程
年,卷(期) 2010,(3) 所属期刊栏目
研究方向 页码范围 492-495
页数 分类号 TN957.52
字数 2988字 语种 中文
DOI 10.3969/j.issn.1001-2400.2010.03.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯大政 西安电子科技大学电子工程学院 199 1584 18.0 28.0
2 吕雁 西安电子科技大学电子工程学院 8 141 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (37)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (24)
二级引证文献  (20)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(1)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(5)
  • 引证文献(0)
  • 二级引证文献(5)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
合成孔径雷达
图像分割
水平集
边缘信息
偏微分方程
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导