原文服务方: 西安交通大学学报       
摘要:
采用小波分解和支持向量机(SVM)技术,提出了一种对说谎脑电(EEG)信号特征进行分类的方法,将其应用于心理意识真实性的检测,获得了满意的结果.以真伪已明确的有意义的个人信息(如姓名、生日)作为被测试的隐藏信息,应用隐藏信息(CIT)测试模式对15名受试者各进行两组测试,并记录其脑电(EEG)信号.提取了探测刺激和无关刺激诱发EEG信号的小波系数,并应用具有统计学意义的特征参数作为SVM分类器的输入进行识别分类.实验结果显示,应用leave-one-out交叉验证法对30组样本数据进行训练测试,获得平均正确识别率为88.3%.因此,该方法可以作为一种心理意识真实性检测的新方法,具有无创、较高正确检测率等优点.
推荐文章
基于小波分解和多分类支持向量机的脸谱识别
脸谱识别
小波分解
支持向量机
ORL脸谱图像库
利用Fisher判别式和事件相关电位的心理意识真实性识别
心理意识
事件相关电位
Fisher判别式
测谎
基于小波分解和支持向量机的网络流量组合预测
网络流量
小波分解
支持向量机
粒子群算法
基于小波变换和支持向量机的彩色纹理识别
纹理
彩色空间
小波变换(WT)
支持向量机(SVM)
纹理识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用小波分解和支持向量机的心理意识真实性识别研究
来源期刊 西安交通大学学报 学科
关键词 心理意识 小波分解 支持向量机 测谎
年,卷(期) 2010,(4) 所属期刊栏目
研究方向 页码范围 119-124
页数 6页 分类号 R318
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑崇勋 西安交通大学生物医学工程教育部重点实验室 122 1268 20.0 26.0
2 赵敏 西安交通大学生物医学工程教育部重点实验室 15 93 7.0 9.0
3 赵春临 西安交通大学生物医学工程教育部重点实验室 4 28 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (7)
参考文献  (5)
节点文献
引证文献  (8)
同被引文献  (17)
二级引证文献  (28)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(5)
  • 引证文献(2)
  • 二级引证文献(3)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(5)
  • 引证文献(2)
  • 二级引证文献(3)
2017(7)
  • 引证文献(0)
  • 二级引证文献(7)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
心理意识
小波分解
支持向量机
测谎
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导