基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对模糊c-均值(FCM)聚类算法受初始聚类中心影响,易陷入局部最优,以及算法对孤立点数据敏感的问题,提出了解决方案:采用快速减法聚类算法初始化聚类中心,为每个样本点赋予一个定量的权值,用来区分不同的样本点对最终的聚类结果的不同作用,为提高聚类速度采用修正隶属度矩阵的方法,并将算法与传统的FCM相比.实验结果表明,该算法较好地解决了初值问题,与随机初始化方法相比,迭代次数少、收敛速度快、具有较好的聚类结果.
推荐文章
基于减法聚类与改进的模糊C-均值聚类算法的说话人识别方法的研究
说话人识别
减法聚类
改进的模糊C-均值聚类
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于自适应权重的模糊C-均值聚类算法
模糊C-均值聚类算法
自适应权重
高斯距离
隶属矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于减法聚类改进的模糊c-均值算法的模糊聚类研究
来源期刊 微型机与应用 学科 工学
关键词 模糊c-均值 减法聚类 权值
年,卷(期) 2010,(16) 所属期刊栏目
研究方向 页码范围 14-16,20
页数 分类号 TP18
字数 3153字 语种 中文
DOI 10.3969/j.issn.1674-7720.2010.16.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李义杰 辽宁工程技术大学软件学院 34 222 10.0 12.0
2 于迪 辽宁工程技术大学研究生学院 11 20 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (26)
参考文献  (2)
节点文献
引证文献  (12)
同被引文献  (46)
二级引证文献  (42)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(5)
  • 引证文献(4)
  • 二级引证文献(1)
2013(6)
  • 引证文献(3)
  • 二级引证文献(3)
2014(14)
  • 引证文献(1)
  • 二级引证文献(13)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(8)
  • 引证文献(1)
  • 二级引证文献(7)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
模糊c-均值
减法聚类
权值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导