基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
齿轮传动工况的复杂性使得其特征参量与故障形式呈非线性映射关系.提出基于Levenberg-Marquardt算法的前向多层神经网络的齿轮故障诊断方法,该方法通过利用二阶导数信息,可以提高收敛速度和增强网络的泛化性能.并以一种齿轮箱故障信号采集实验系统为例,通过MATLAB软件及其神经网络工具建模和仿真研究.结果表明,Levenberg-Marquardt神经网络对齿轮常见故障有良好的识别能力,能稳定、准确地识别各类故障,与标准BP网络相比,收敛速度快且诊断更为准确.
推荐文章
基于Elman神经网络的齿轮故障诊断研究
Elman神经网络
齿轮
故障诊断
基于Elman神经网络的齿轮故障诊断研究
Elman神经网络
齿轮
故障诊断
基于小波神经网络(WNN)的齿轮故障诊断
齿轮故障机理
齿轮故障诊断
小波神经网络(WNN)
基于神经网络的齿轮故障诊断专家系统
齿轮
故障诊断
神经网络
专家系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于L-M神经网络的齿轮故障诊断
来源期刊 计算机技术与发展 学科 工学
关键词 神经网络 麦夸特算法 齿轮故障诊断
年,卷(期) 2011,(1) 所属期刊栏目 应用开发研究
研究方向 页码范围 210-213,217
页数 分类号 TP183
字数 3374字 语种 中文
DOI 10.3969/j.issn.1673-629X.2011.01.055
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汤嘉立 江苏技术师范学院计算机工程学院 15 87 6.0 9.0
2 柳益君 江苏技术师范学院计算机工程学院 28 146 8.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (56)
参考文献  (10)
节点文献
引证文献  (12)
同被引文献  (45)
二级引证文献  (34)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(14)
  • 引证文献(1)
  • 二级引证文献(13)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
神经网络
麦夸特算法
齿轮故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导