基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大规模的高光谱数据分类,为了利用未标签样本所含信息,来提升分类器性能,提出了一种半监督分类算法.该算法根据聚类假设,即属于同一类地物的样本点在聚类中被分为同一类的可能性较大的原则来改进核函数,采用基于光谱角度最的K均值聚类算法对样本集进行聚类,根据多次聚类的结果,构造包袋核函数,然后利用加法和乘法运算将包袋核函数和RBF核函数组合成新的核函数,从而把未标签样本信息融入分类器.而且采用最小二乘支持向量机,将标准支持向量机的二次规划问题转换为求解线性方程组的问题.高光谱实测数据实验表明了本文方法的优越性.
推荐文章
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
基于核的偏最小二乘特征提取的最小二乘支持向量机回归方法
偏最小二乘
最小二乘支持向量机
核的偏最小二乘
回归
一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法
多核最小二乘支持向量机
非平坦函数
谱系聚类
偏最小二乘回归
鲁棒性
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类核函数的最小二乘支持向量机高光谱图像半监督分类
来源期刊 信号处理 学科 工学
关键词 半监督 最小二乘 聚类 核函数 支持向量机
年,卷(期) 2011,(2) 所属期刊栏目
研究方向 页码范围 276-280
页数 分类号 TP751.1
字数 4169字 语种 中文
DOI 10.3969/j.issn.1003-0530.2011.02.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万建伟 国防科技大学电子科学与工程学院 136 1396 20.0 30.0
2 许可 国防科技大学电子科学与工程学院 17 50 4.0 6.0
3 高恒振 国防科技大学电子科学与工程学院 5 61 4.0 5.0
4 钱林杰 国防科技大学电子科学与工程学院 10 44 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (11)
参考文献  (8)
节点文献
引证文献  (18)
同被引文献  (28)
二级引证文献  (12)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(6)
  • 引证文献(4)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(7)
  • 引证文献(4)
  • 二级引证文献(3)
2016(6)
  • 引证文献(4)
  • 二级引证文献(2)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
半监督
最小二乘
聚类
核函数
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导